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Phosphorylation Facilitates the Integrin Binding of Filamin under Force

Harvey S. Chen, Kevin S. Kolahi, and Mohammad R. K. Mofrad*
Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California

ABSTRACT Filamins are actin binding proteins that contribute to cytoskeletal integrity and biochemical scaffolds during mech-
anochemical signal transductions. Structurally, human filamins are dimers composed of an actin-binding domain with 24 immu-
noglobulin (Ig)-like repeats. In this study, we focus on the recently solved high-resolution crystal structure of Ig-like repeats 19–21
of filamin-A (IgFLNa-R19–R21). IgFLNa-R19–21 is of marked importance because it contains the binding site for integrins and
facilitates the dynamic ability of filamin-A to communicate with the extracellular environment. However, the structure of filamin-A
shows an interesting domain arrangement where the integrin binding site on IgFLNa-R21 is hindered sterically by IgFLNa-R20.
Thus, a number of hypotheses on the regulation of filamin-A exist. Using molecular dynamics simulations we evaluated the
effects of two primary regulators of filamin-A, force and phosphorylation. We find that a tensile force of 40 pN is sufficient to initiate
the partial removal of the autoinhibition on the integrin binding site of IgFLNa-R21. Force coupled to phosphorylation at Ser2152,
however, affords complete dissociation of autoinhibition with a decreased force requirement. Phosphorylation seems to decrease
the threshold for removing the IgFLNa-R20 b-strand inhibitor within 300 ps with 40 pN tensile force. Furthermore, the molecular
dynamic trajectories illustrate phosphorylation of Ser2152 without force is insufficient to remove autoinhibition. We believe the
results of this study implicate filamin-A as a tunable mechanosensor, where its sensitivity can be modulated by the degree of
phosphorylation.
INTRODUCTION

The dynamic nature of the cytoskeleton is due, in part, to the

multitudes of reorganizing proteins that alter the geometry of

the cytoskeletal network. Consequentially, as the geometry

of the cytoskeleton is altered, so are the physical characteris-

tics of the cell such as, shape, position, stiffness, and even

metabolism (1,2). It was once believed that cells lacked

major organization and that their cytosol was likened to

a soup of chemicals. However, recent evidence is surfacing

that illustrate a precise localization of signal transduction and

intracellular biochemistry. This is made possible by the

precise organization of cellular factors that are either directly

or indirectly anchored to the cytoskeleton. In addition to this

scaffolding role that the cytoskeleton plays during signaling

and metabolism, the cytoskeleton itself can also serve as a

transducer of mechanical stimuli through cascades involving

second messengers that are actin-associated proteins (3–6).

Of these actin-binding proteins, filamin plays an important

dual role in regulating the dynamic integrity of the actin

cytoskeleton and in cellular mechanotransduction. Filamins

contain the unique capacity to orient the actin filaments

orthogonally resulting in the formation of a 90� meshlike

F-actin network (7). Filamins function as molecular dimers,

and are classically described as functioning in formation of

lamellipodia, but are also localized to the cortical actin

network to function as a scaffold for a trafficking transmem-

brane receptors, signaling and adaptor proteins (1,2,7). In
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addition to functioning as an actin-binding protein, filamin

can be degraded by proteolysis yielding products that may

function as signaling molecules, integrating nuclear and

cytosolic pathways (8–10).

Of the three existing homologs, filamin-A is most abun-

dant and widely expressed (7,11) and is essential to normal

human development (12,13). The diversity in phenotypes

associated with different filamin mutations shows that fila-

mins carry out a variety of essential functions and the current

evidence suggests that in many cases specific disease pheno-

types will result from disruption of specific interactions

between IgFLNa-R domains and their binding partners (14).

Each human filamin-A (FLNa) monomer is a 240–280 kDa

actin cross-linking protein composed of an N-terminal actin-

binding domain, a rod domain of 24 immunoglobulin (Ig)-like

repeats (IgFLNa-R) (Fig. 1 A) (7,15,16). Electron microscopy

and sequence analysis studies suggest a v-shaped structure for

filamin due to hinges between IgFLNa-R15 and -R16 and

IgFLNa-R23 and -R24 (17,18). More recently, however,

IgFLNa-R domain 19–21 (IgFLNa-R19–21) was crystal-

lized, and an unexpected domain arrangement was discovered

that illustrated IgFLNa-R20 as partially unfolded and brings

IgFLNa-R21 into close proximity to IgLFNa-R19 (14). The

N-terminus of IgFLNa-R20 forms a b-strand that associates

with IgFLNa-R21, which has been identified previously as a

major binding site for integrin adhesion receptors (14,19–21)

(Fig. 1 B). This b-strand sterically hinders the binding of

IgFLNa-R21 to integrin adhesion receptors (14).

The major role of filamin-A and integrin binding is to regu-

late cell spreading and survival (22). Other research has

shown that filamin-A may modulate cell sensitivity to force

and mechanoprotection (23,24). Integrin ab-heterodimers
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that span the plasma membrane connect the extracellular

environment to the actin cytoskeleton (5,8). Thus, the fila-

min-integrin complexes could provide a mechanical and

biochemical link through which the actin cytoskeleton could

respond to external cues. Filamin-A binds integrin at IgFLNa-

R21, and leads to the transduction of mechanical stimuli from

extracellular domain to intracellular domain through focal

adhesions (25).

The structure of IgFLNa-R21 is a b-sandwich composed

of two b-sheets. The integrin b7 cytoplasmic domain binds

to the CD face of the IgFLNa-R21 (26). The CD face is

the integrin-binding site formed by the two b-strands that

were identified by a previous study (26). In our model, the

FIGURE 1 (A) Illustration of the structure of a human filamin-A. The

figure also illustrates how filamins crosslinks actin filaments into orthogonal

networks in cortical cytoplasm. At the N-terminus is the actin binding

domain, and is followed by the Ig-like repeats (IgFLNA-R1–IgFLNA-

R24). This study focuses on the binding of integrin with filamin-A at rod

repeat 21. (B) The structure of IgFLNa-R19–21 with Ser-2152 phosphoryla-

tion illustrated (circled). IgFLNa-R19 is on the left; IgFLNa-R20 is on the

right; IgFLNa-R21 is in the middle. The phosphoSer2152 residue was shown

circled. The protein structure was obtained through Protein Data Bank

(PDB ID: 2JS3) (14), and the Ser2152 side chain was modified through

CHARMm software. (C) A depiction of how the tension force was applied

to the unphosphorylated rod domain repeats 19–21, Model 4. In these simu-

lations, the C-terminus of repeat 21 was fixed, which is represented by a gray

bead. In A, force was applied to pull the N-terminus of repeat 19 along the

axis of the rod domain. We also tested the effect of torque as in B. With tor-

que the autoinhibition could be further removed from the integrin bind site of

repeat 21.
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CD face corresponds to the two b-strands formed by amino

acid residues 2268–2287. Integrin binding to IgFLNa-R21

can be inhibited by phosphorylation of the integrin tail or

by other integrin tail binding proteins that compete with

filamin (14). NMR and biochemical analyses indicate that

the IgFLNa-R20-21 domain pair inhibits integrin b-tail

binding and mutations perturbing the IgFLNa-R20-21 inter-

action enhance integrin binding (27).

It has been suggested that disrupting this IgFLNa-R20 and

IgFLNa-R21 interaction will reveal the binding site for integ-

rin on IgFLNa-R21 and facilitate the binding to integrin.

Three methods of regulation have been proposed, mechan-

ical force, phosphorylation of the inhibitory domain on

Ser2152 residue, and alternative splicing leading to splico-

zymes lacking the inhibitory peptide region (14,19–21). In

addition, these three hypotheses may be seemingly interre-

lated. For example, mechanical signals are abundant in cell

biology and are intimately linked with biochemical signaling

pathways (28,29).

The objective of this study is to test the hypotheses leading

to the activation and integrin binding of filamin-A. It has

been illustrated previously that lack of the inhibitory region

through alternative splicing increases the interaction of

filamin with integrin (11,30). The inhibitory domain of

IgFLNa-R20 regulates the filamin-A integrin-binding on

IgFLNa-R21. This study focuses on the phosphorylation of

Ser2152 and the applied mechanical force, which are two

important potential factors involved in regulating integrin

binding. Functionally, forces applied to this region can phys-

ically dissociate the inhibitory domain of IgFLNa-R20, but

this may be independent and exclusive of phosphorylation

at this same site. Alternatively, the two mechanisms, phos-

phorylation and mechanical force, may work synergistically,

and these questions motivate our experimental endeavor.

MATERIALS AND METHODS

Crystal structure of IgFLNa-R19–21 was obtained through Protein Data

Bank (PDB ID: 2JS3) (14). A complete filamin molecule, including all 24

rod domain IgFLNa-Rs has not yet been crystallized successfully. Visual

molecular dynamic (MD) software was used to explore the secondary struc-

ture of the protein and for postprocessing of our MD results (31).

The simulated structure corresponds to the amino acid residues 2045–

2329 of the full length filamin-A sequence. The atomistic coordinates for

residues 2163–2170 and 2191–2197 were undetermined in the original pub-

lished IgFLNa-R19–21 structure (14). The missing structure was completed

using structural and sequence alignment methods with SWISS-MODEL-

EXPASY software (14,32–34). The missing residues corresponded to

isolated loop-like regions of IgFLNa-R21.

MD simulations were carried out using software CHARMm version

c32b1 (35,36). CHARMm was also used to model the phosphate group

onto Ser2152 (Fig. 1 B) (36). A switching function with values between

12.0 Å and 13.0 Å were used to cut off with nonbonding van der Waals

and electrostatic interactions. The total number of atoms within the system

was 4195 and 4199 for unphosphorylated and phosphorylated models,

respectively. The models were linearly heated to 310 K and constant steering

forces of 0–40 pN were applied for 5 ns (37). However, all the noticeable

conformation changes occurred within the first 500 ps. After the 500 ps
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time frame, all the models showed stabled conformations as determined

through root mean-square deviation (RMSD) calculations of the a-carbon

backbone. Therefore, we decided to discuss the model within the 500 ps

timescale.

To represent solvent environment, an implicit model was used for solvent-

protein interactions, namely the analytical continuum electrostatics (ACE)

water model available in CHARMm (38). This model approximates the

electrostatic and nonelectrostatic contributions of water molecules to the

effective free energy. Poisson’s equation was used to calculate the electro-

static contribution to the free energy (38). The ACE parameters were set

to 1.0 IEPS (dielectric constant used for the space occupied by the mole-

cule), 80 SEPS (dielectric constant used to approximate solvent), ALPHA

1.3 (Gaussian density distribution that determines atom volume), and sigma

2.5 (hydrophobic contribution scaling value to ACE).

The implicit water model simulates aqueous environment by treating

the water molecules as a continuum dielectric constant while incorporating

the free energy change due to solvation (39). After the implicit models, we

confirmed all our simulations using the explicit model for water representa-

tion as well (40). When a water molecule makes a hydrogen bond (h-bond)

with the protein backbone, its lifetime can be longer than several picosec-

onds (41). This can lead to cooperative dissociation of the backbone

h-bond network. In implicit solvent simulations, even if a h-bond is tempo-

rarily destabilized, it will soon reform because the solvation effect is imple-

mented as smooth energy surface so that the H and O atoms are still in a local

energy well.

The implicit model was always preferred initially because in explicit

models the large number of water molecules yield intractable within reason-

able timeframes. Furthermore, modeling the solvent explicitly is exception-

ally computationally demanding, as the number of atoms can increase at

least an order of magnitude. It was necessary to limit our use of explicit

water simulations as a reference and validation tool only, rather than an

explorative one.

Six simulation models were used to study the effect of tension force and

phosphorylation, and the parameters used are summarized in Table 1. We

simulated all possible combinations of phosphorylation and force. Models

including force are pre-equilibrated, or in other words are continuations of

models 1 and 2. For each simulation, a constant force was applied to the

N-terminal residue on IgFLNa-R19 with the magnitudes of force for each

simulation of Model 3 to 6 were 10,20,30, and 40pN of force. In addition,

each scenario was repeated a minimum of five times to verify the observed

trajectories.

To determine a relevant order of magnitude of tension force to remove

the autoinhibitory strand, a constant velocity model in explicit water box

was run using NAMD. The model was phosphorylated, and the constraints

and direction of pull followed exactly as the models they were represent-

ing (Table 1). The velocity was 0.0002 Å/ps, and the model was run for

50 ns over a 100 Å distance. The resulting force required was ~100 pN.

Therefore, we decided to use 10 pN with 10 pN increment to begin the

experiment.
Constraints applied in the MD simulations and
justifications

Initially, to test for the effect of phosphorylation and forces, only the

C-terminus on IgFLNa-R21 was fixed. However, with only the C-terminus

(Pro2328) fixed, the repeat containing integrin binding capacity, IgFLNa-

R21, would unfold significantly at forces>20 pN (Fig. 2 A). This took place

in both phosphorylated and nonphosphorylated models. Furthermore, the

autoinhibition could not be dissociated before unfolding of IgFLNa-R21,

and IgFLNa-R20 does not refold and approach the b-inhibitor as expected

(see Results). Therefore, more constraints were added to IgFLNa-R21 to

stabilize IgFLNa-R21. We empirically fixed residues on the C-terminal

loop regions to stabilize IgFLNa-R21. Through minimizing these constraints

we were able to identify residues that must be fixed to stabilize IgFLNa-R21

during tension, and the constraints used are summarized in Table 1. Consis-

tently, we found residues Pro2328, Pro2302, and Pro2252 are necessary for

stabilization of IgFLNa-R21 under tension (Fig. S1 in the Supporting

Material). The cis-amide bond formed by proline produces a kink in the

amino acid primary structure and from our analyses seems essential to

maintain the Ig fold of IgFLNa-R21.

These constraints could also represent interactions that may exist in the

full-length protein between the rod domain repeats IgFLNa-R20–21 and

IgFLNa-R22–24. These interactions may stabilize IgFLNa-R20 and 21

when tension force is exerted and prevents significant conformational distor-

tion during tension, preserving the integrin binding capability. Using

multiple constraints also promoted the refolding of IgFLNa-R20, and in

essence provides an interesting mechanistic hypothesis to the stabilization

present once this autoinhibitory region is dissociated.

The direction of the mechanical perturbation was varied to identify the

conformational reaction of the rod domain with torque applied, in addition

to the axial tension (Fig. 1 C (A, red arrow)). After the MD simulation,

the structural trajectories were analyzed to determine the conformational

changes due to applied mechanical perturbations. Each IgFLNa-R is colored

uniquely to clarify the relative movements of the repeats as well as the

changes in structure (Fig. 1 B). The structural trajectories of the b-strand

inhibitor were examined during the course of these simulations.

To assess the integrin binding characteristics of filamin-A, we assumed

that the propensity of filamin to bind to integrin is increased when the

b-strand inhibitor of IgFLNa-R20 has completely dissociated from the

IgFLNa-R21, exposing the integrin binding site. We also consider that reas-

sociation of the partially unfolded IgFLNa-R20 with its b-strand may also

promote the stability of this potentially activated conformation of filamin-A.

RESULTS

In this study, we simulate hypothetical mechanisms of the

activation of filamin-A integrin binding, namely phosphory-

lation of Ser2152 and mechanical force. The goal of these
TABLE 1 Models used in the simulations

Model

Phosphorylation

on Ser2152

Force applied

on IgFLNa-R19

Constraints

(protein residue No.)

Implicit model

system size (atoms)

Explicit model

system size (atoms)

Maximum duration

of simulation (10�9 s)

1 No n/a 2328 4195 62,104 5.0

2 Yes n/a 2328 4199 62,187 5.0

3 No 40 pN 2328 or 2302 or 2252–2255 or 2278–2281 4195 330,468 5.0

4 Yes 40 pN 2328 4199 332,516 5.0

5 Yes 40 pN 2328 or 2302 or 2252–2255 or 2278–2281 4199 332,516 5.0

6 No 50 pN 2328 or 2302 or 2252–2255 or 2278–2281 4199 330,468 5.0

Model 1 served as the control, where no force or phosphorylation occurred, and confirms the crystallographic structure determined by Lad et al. (14). Model 2

included only physiological phosphorylation, and no force. Model 3 tests only the effect of force on this rod region. Model 4 and 5 test force and phosphor-

ylation together. Constraints are required when force is applied to this rod region to stabilize the integrin binding site. Model 6 illustrates that 50 pN of force

was needed to remove autoinhibition when phosphorylation is not present. n/a is defined as having no force applied.
Biophysical Journal 97(12) 3095–3104
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simulations is to identify if Ser2152 phosphorylation or

mechanical force-induced activation of the integrin binding

of filamin-A are possible. However, how phosphorylation

or force can mechanistically accomplish this is unknown.

In this study, all combinations of phosphorylation and

tension total are tested, the absence of tension and phosphor-

ylation of Ser2152, our negative control, a phosphorylated

Ser2152 model without tension, an unphosphorylated Ser2152

model with tension, and a combination of phosphorylation

of Ser2152 and tension. As our simulations of these models

proceeded, it became necessary to include a fifth model to

further test and explore the effects of the loading conditions

imposed, and additional simulations with greater forces,

50 pN, and timescales, 5.0 ns, were also carried out. In the

following result descriptions, please keep in mind that the

force magnitudes quoted are used for relative comparisons

and may not necessarily reflect the magnitudes of force expe-

rienced by filamin-A under physiological conditions, i.e.,

they can be considerably smaller in vivo.

FIGURE 2 (A) Result of Model 4. FLNa-R21 was deformed due to only

fixing one amino acid in the C terminus. FLNa-R21 deformation was unde-

sirable and may be the reason why the b-inhibitor was not removed in this

case. The b-inhibitor was less likely to leave FLNa-R21 when FLNa-R21

was deformed. (B) An illustration of the positions of the multiple stabilizing

constraints on repeat 21. Of these 10 amino acids, four of them (2328, 2302,

2255, and 2278) are proline. By stabilizing these C-terminal loops of repeat

21, the structure was increasingly stable during tension and did not linearize

under tension (Fig. 3 A).
Biophysical Journal 97(12) 3095–3104
Model 1: without force and phosphorylation, the
autoinhibition cannot be removed

Model 1 was the negative control without phosphorylation or

applied force. The model was run with the complete IgFLNa-

R19–21 rod region. This simulation did not illustrate any

propensity of conformational change within 5 ns of simula-

tion run. The explicit solvent models also expressed no

conformational change. Six simulations all illustrate that the

crystallized structure of IgFLNa-R19–21 determined by Lad

et al. (14) was indeed a stable conformation at physiological

conditions in the absence of force and phosphorylation

(Fig. 1 C (A, red arrow)). In Model 1, the average RMSD

over the whole trajectory for 5 ns was 4.455 Å, with a standard

deviation of 0.464 Å. The RMSD value was consistent during

simulations at ~20 ps (Fig. S2).

Model 2: without force applied but with
phosphorylated Ser2152, the autoinhibition
still cannot be removed

Model 2 was a phosphorylated control that did not include

external force application. Surprisingly, the result was the

same as in Model 1; we had anticipated that phosphorylation

would alter the conformation of this region to affect autoinhi-

bition. Extending the simulation time beyond 500 ps to 5 ns

did not show any potential conformational changes due solely

to phosphorylation. Despite the increased ionic character with

the added phosphoryl group, our simulations with explicit

solvent models also confirmed the lack of a meaningful

conformational change (Fig. 1 B). This puts into question

whether or not activation can take place in the absence of

any physical forces.

In Model 2, the average RMSD over the whole trajectory

for 5 ns was 5.573 Å, and the standard deviation was

0.237 Å. The RMSD value does not fluctuate significantly

beyond the 40 ps timepoint (Fig. S2).

Model 3: without phosphorylation and pulled
under 40 pN, the autoinhibition began to
dissociate, yet complete removal cannot be
achieved

Model 3 was devised to test the effect of force only. In contrast

to Models 1 and 2, force can drastically alter the conformation

of the model (Fig. 3 A). The model was pulled for a total of

5 ns under 40 pN. After 100 ps of simulation, dissociation

of the b-strand inhibitor does not occur and the integrin

binding site fails to become exposed (Fig. 3 A). No further

conformational change takes place in the following time.

Furthermore, a shearing force is exhibited during the

b-strand’s association with the integrin binding site of

IgFLNa-R21. This can be visualized by the distortion in the

CD-face of IgFLNa-R21 (Fig. 3 A). Despite increasing the

force even beyond the typical 40 pN, the b-strand inhibitor

fails to dissociate before IgFLNa-R21 loses significant
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tertiary structure even with many stabilizing constraints

imposed. The intramolecular forces between the b-strand of

IgFLNa-R20 and IgFLNa-R21 can however tolerate ten-

sions >40 pN.

During initial simulations, force was applied parallel to the

axis of the rod domain, to result in pure tension without any

FIGURE 3 (A) Molecular trajectory of filamin-A rod domain repeats

19–21 under 40 pN of tension, Model 3, is illustrated. Multiple stabilizing

constraints were applied in this model. Each arrow represents ~100 ps. At

t1, or ~100 ps, the center of mass of repeat 19 (right) translates away to

move away from the center of mass of repeat 21 (middle). The gray bead

represents the harmonic constraint on repeat 21. Although torque and

tension is being applied to the b-strand inhibitor of IgFLNa-R20, the force

is not sufficient to result in complete dissociation of the b-strand inhibitor

and the integrin binding site of repeat 21. The autoinhibition remained

bound through the end of the simulation, t3, and even if the simulation pro-

ceeded to 1ns. (B) The filamin-A rod region 19–21 under tension with phos-

phoryl modification of Ser2152, Model 5, is illustrated here. The gray bead

represents the harmonic constraint on the C-terminus of the rod domain.

With the phosphorylation of Ser2152 residue, further dissociation from the

integrin binding site of the inhibitor is apparent within 100 ps. With 40 pN

and after 300 ps, the inhibition begins to further dissociate and translate

away from the integrin-binding site, and alternatively associates with repeat

20. Within 500 ps with 40 pN tension, the b-inhibitor can be removed

completely.
resulting bending moment. However, tensile forces applied

parallel to the rod domain axis and b-strand inhibitor fail

to offer a component of force that will abduct the b-strand

inhibitor from IgFLNa-R21. This inevitably underlies the

observation that the b-strand inhibitor appears to shear the

CD-face of IgFLNa-R21, and fails to dissociate (Fig. 3 A).

This is a consequence of the inherent geometry and confor-

mation of the rod domain. We therefore hypothesized that

autoinhibition could be removed by pulling the bound

b-strand inhibitor from IgFLNa-R20 normal to the plane

containing the CD-face, exerting a torque in addition to

tension (Fig. 1 C (B, blue arrow)).

Whereas the application of torque leads to partial dissoci-

ation of the inhibitory b-strand (Fig. 3 A), the complete

dissociation could not be achieved due to IgFLNa-R21 loss

of tertiary structure under tension. Further partial removal

could be achieved through stabilizing constraints described

in Materials and Methods. We note the salt bridge between

Arg2146 and Asp2287 is significant enough to resist complete

dissociation of the autoinhibition. The result of this study

implied that bending of the rod domain is essential in the

removal of the autoinhibition in unphosphorylated models

(Fig. 3 A).

Model 4: IgFLNa-R21 unfolded into linear
sequence with only the C-terminus residue fixed,
but the partial removal of autoinhibition may
suggest that the phosphorylation lowers the
constraint requirement

This model was first set to test the effect of phosphorylation

and external forces. Initially, we imposed no stabilizing

constraints for IgFLNa-R21. Although deformation of the

C-terminal domain of IgFLNa-R21 does occur with a 40 pN

tensile force, partial removal comparable to Model 3 could

be obtained with decreased magnitude of force as compared

to Model 3, e.g., with 30 pN (Fig. 3 A). Despite the deforma-

tion that occurs in the N-terminal domain of IgFLNa-R21 at

30 pN of tension force, the autoinhibitory b-strand can be

partially removed, but the association of Arg2146 with

Asp2287 seemed to be limiting. This removal is analogous to

the case in which a 40 pN force is applied as in Model 3,

and can result in partial removal of inhibition as illustrated

in Fig. 3 A. Complete dissociation of the b-strand is prevented

by the ionic interaction between Arg2146 with Asp2287 as in

Model 3.

These results are surprising because partial removal could

not be accomplished in Model 3 without larger magnitude of

force and stabilizing constraints on IgFLNa-R21. This trans-

lates to a change in the requirements for the removal of the

inhibitory b-strand, and therefore the autoinhibition seemed

more likely to dissociate with phosphorylation present at

Ser2152.

Moreover, IgFLNa-R20 showed a tendency to refold at

100 ps with a 30 pN force applied, and despite autoinhibition
Biophysical Journal 97(12) 3095–3104
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persisting. By this refolding we mean that IgFLNa-R20

appeared to rotate and position its anti-parallel b-strand

sandwich such that the inhibitory b-strand could position

and associate in an anti-parallel manner (Fig. 3 A and Fig. 4 B).

However, we note again that the destabilization of tertiary

structure of IgFLNa-R21 when subject to applied force is an

unrealistic and undesired phenomenon. Therefore, con-

straints were required to maintain the stability of IgFLNa-

R21, and were implemented in Model 5.

Model 5: with phosphorylation and applied 40 pN,
the autoinhibition was successfully removed
within 500 ps

Model 5 involved multiple constraints. Through trial and

error, the constraints were set as shown in Table 1. Residues

within the exposed loops near the C terminus of IgFLNa-R21

were harmonically constrained, and the number of

constraints was reduced to a minimum that could necessitate

maintenance of stability of IgFLNa-R21 during tension. All

of the fixed amino acids resided in IgFLNa-R21, and were

primarily proline residues, or adjacent to proline residues.

The fixed residues on IgFLNa-R21 are shown in Fig. 2 B.

Of the 10 fixed amino acids shown in Table 1, four of

them were prolines, namely residues 2328, 2302, 2255,

and 2278. The other six residues were all neighboring

prolines that helped to stabilize the proline turns.

Using these extra constraints was justifiable as prolines

are unique amino acid residues that often provide kinks and

turns in the tertiary structure of proteins. These proline resi-

dues provide the turns between the b-pleated sheets in all

repeats in filamin-A. Therefore, fixing these prolines stabi-

lizes IgFLNa-R21 by maintaining the tertiary structure of

IgFLNa-R21 and preventing the hydrogen bonds between

the b-pleated sheets from being disrupted by tension.

Although the model only includes IgFLNa-R19, -R20, and

-R21, it was suspected that IgFLNa-R22 or even further

repeats may provide stabilizing interaction with IgFLNa-

R21. In vivo, repeats IgFLNa-R22–24 may interact with the

proline residues and prevent IgFLNa-R21 from unfolding

on application of force. Unfortunately, this hypothesis cannot

be tested at this moment because IgFLNa-R19–21 is the most

complete elucidated crystal structure of filamin-A, and these

interactions should be probed if a structure becomes available.

Model 5 illustrates clear dissociation of the autoinhibition.

In the first 100 ps, similar to Model 3, the IgFLNa-R19 center

of mass begins to move away from the center of mass of

IgFLNa-R21. However in contrast to Model 3, at ~300 ps,

IgFLNa-R20 begins to rotate and orient itself in an antiparallel

fashion as it increases its proximity to the b-strand inhibitor.

At 350 ps, the autoinhibition completely dissociates from

IgFLNa-R21, and thus integrin binding is no longer sterically

hindered (Fig. 3 B) (see Movie S1). The dissociated b-strand

that was inhibiting the integrin binding of IgFLNa-R21 begins

to alternatively associate with its native tandem repeat,
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IgFLNa-R20 (see Movie S1). This interaction seemed to

stabilize and hold the dissociated b-strand inhibitor in place,

and only occurs with phosphorylation.

In contrast to Model 3, pure tension without any torque is

sufficient to drive dissociation of the b-strand inhibitor. With

a 40 pN force, the direction of pulling appeared unimportant,

and all cases resulted in complete removal of auto inhibition

within 500 ps, analogous to the trajectory of Fig. 3 B.

An interesting observation was that the phosphorylated

Ser2152 residue laid within this non-b-pleated sheet amino

acid loop (Fig. S1). Moreover, this amino acid loop appeared

to have a strong tendency to fold toward the b-strand inhib-

itor in IgFLNa-R20. The simulation showed that during the

refolding of IgFLNa-R20, the loop and b-pleated sheet

migrate toward each other (see Movie S1). Taking a closer

look at the residues of the amino acid loop and the b-strand

inhibitor, there were four consecutive arginine residues

upstream of the inhibitor. The positively charged arginine

residues have relatively high affinity for the negatively

charged phosphate group on Ser2152.

Model 6: without phosphorylation, 50 pN is
required to remove autoinhibition

Model 6 was set out to test the minimum force required to

remove the autoinhibition in nonphosphorylated model.

The trajectory was similar to that of Model 5, which showed

complete removal of the autoinhibition within 100 ps.

Smaller forces applied to Model 3 and 5 did not
remove autoinhibition completely

Further simulations were carried out to test for the minimum

force required to remove the autoinhibition. Models pulled

with 10 pN and 20 pN did not propose appreciable confor-

mational changes in the protein. The center of mass of

IgFLNa-R19 did not translate away from IgFLNa-R21

(data not shown), and IgFLNa-R20 did not show any refold-

ing tendency. On the other hand, when 30 pN of tension is

applied, the distance of center of masses of IgFLNa-R19

and IgFLNa-R21 does increase, and IgFLNa-R20 began to

appear to refold, apparently rotating to position the bound

b-strand inhibitor into an anti-parallel b-strand topology,

all within 100 ps. A partial dissociation of the b-strand inhib-

itor, where Arg2146 remains bound, could be accomplished

within 400 ps with phosphorylation. However, extending

this 30 pN tension simulation to 5 ns did not illustrate that

a complete removal is possible with 30 pN(data not shown).

This test implies that a minimum force of 40 pN is required

to remove autoinhibition.

Explicit solvent models agreed with implicit
models

We tested Models 3–6 by running simulations that incorpo-

rated an explicit water box model to represent the solvent



Filamin and Integrin Binding 3101
interactions more explicitly. During the first 100 ps we were

able to simulate, the trajectory was identical to the result in

our implicit model—the distance of the center of masses of

IgFLNa-R19 and IgFLNa-R21 increased with a 40 pN force,

the b-strand inhibitor began to dissociate similarly, and

IgFLNa-R20 appeared to associate with the previously

bound b-strand inhibitor. The molecular trajectories in both

explicit and implicit models were analogous in both phos-

phorylated and nonphosphorylated models.

DISCUSSIONS

The integrin binding activation of filamin-A is hypothesized

to occur through three potential mechanisms, by phosphory-

lation at Ser2152, mechanical force, or alternative splicing

generated isoforms of filamin-A. Although alternative

splicing is not tested in this study, our results can shed light

on two of the three current hypotheses leading to filamin-A

integrin binding activation. Activation of filamin-A’s integrin

binding capacity is evaluated by determining if autoinhibition

is disrupted and the integrin binding site of IgFLNa-R21 is

exposed. Testing the combined effects of tension on

IgFLNa-R19-21 and phosphorylation revealed that phosphor-

ylation of Ser2152 without tension is not sufficient to result in

activation. However, by increasing the applied force, the

b-strand inhibitor from IgFLNa-R21 without phosphoryla-

tion can be removed. The results suggest that the phosphory-

lation is there to decrease the requirement, and thus increase

the chance, to remove the autoinhibition. Removal of autoin-

hibition can still be achieved without phosphorylation. Phys-

iologically, integrin binding of filamin-A may be activated

after being phosphorylated at Ser2152 and when subsequent

tension is applied to the rod domain.

Phosphorylation was also shown to lower the constraints

requirements, magnitude of force (or torque) required for

complete removal of the b-strand inhibition of IgFLNa-

R21. This conclusion was derived by comparing the trajectory

events in Models 2–6. Models 1–3 are controls. Model 1 was

not phosphorylated and no force was applied. Model 2 was

phosphorylated but not pulled, whereas Model 3 was pulled

but not phosphorylated.

The results of Model 1 and 2 were interesting and unex-

pected. Without any applied pulling force, the structure

showed no meaningful conformational changes. In a previous

work by Lad et al. (14), mechanical force had been proposed

as a possible regulatory mechanism for the promotion of fil-

amin-A integrin binding. In addition, phosphorylation was

also listed as a possible method to elicit filamin-A integrin

binding, but is insufficient in modulating integrin binding

activity in experiments (42). In our phosphorylation simula-

tions, however, we found by comparing Models 2 and 1,

where Model 2 was phosphorylated, and Model 1 unphos-

phorylated, that the results were identical. Neither model

illustrated a tendency to dissociate the autoinhibition present

on IgFLNa-R21. On the other hand, simulating force on an
unphosphorylated IgFLNa-R19-R21, Model 3, autoinhibi-

tion could at least partially be removed with higher forces

and with maximum torque, i.e., perpendicularly to the rod

domain axis. We note that this event in Model 3 does require

stabilization of IgFLNa-R21. Complete removal in a non-

phosphorylated model requires more applied force than its

phosphorylated counterpart.

Although Model 1 and 2 suggest that the integrin inhibi-

tory strand does not dissociate from filamin-A without

applied force, other experiments (42) support that filamin-

A binds with integrins isolated from cell lysates, where there

is assumed to be no applied force. To address this problem,

we re-equilibrated Model 3 and 4 for 3 ns. After the integrin-

binding site is exposed and tension removed, we observed

no potential to refold. Thus, we hypothesize that the fila-

min-A was activated previously by force before the cell was

lysed.

The geometry of the complex formed by b-strand inhibitor

and IgFLNa-R21 CD face underlies why an absolute absence

of torque cannot sufficiently accomplish removal of the auto-

inhibition. To drive dissociation of the b-strand inhibitor,

a torque must be supplied. The b-strand inhibition sits within

a groove formed on the CD face of IgFLNa-R21 by two anti-

parallel b-strands of this same repeat (Fig. 1 B). Pure tension

simply results in a shear stress on the face of this groove and

only serves to further destabilize the tertiary structure of

IgFLNa-R21. An effective torque applies a component of

force that serves to displace the b-strand from the binding

site. Thus, the logical way to remove the inhibitor was to pull

it away, in a direction perpendicular to and outward of the

plane containing the three interacting b-strands (Fig. 1 C).

We noted, however, that pure tension can result in dissocia-

tion of the b-strand when the rod region IgFLNa-R19-21 is

phosphorylated at Ser2152. This may be accomplished by

the phosphoserine attraction with Arg2146–2149. These strong

interactions on the b-strand inhibitor may provide sufficient

torque to allow removal of the b-strand inhibitor from the

integrin binding site of IgFLNa-R21 during tension.

Phosphorylation increases effectively the sensitivity of

removal of the autoinhibition of IgFLNa-R19–21 to loading

conditions. Furthermore, the magnitude of tension could be

reduced to result in filamin-A activation of integrin binding.

Although phosphorylation of the Ser2152 residue lowers the

threshold of tensile force required to remove the autoinhibi-

tion, we found that mechanical force was necessary to

remove the autoinhibition and reveal the binding site for

integrin. In other words, phosphorylation of Ser2152 without

force is not sufficient to result in removal of the autoinhibi-

tion on IgFLNa-R21.

In the experiment by Travis et al. (42), phospho-blocking

or mimicking mutations did not interfere with the ability of

integrin-binding in cell lysate. This finding in light of our

results, leads one to propose that the function of phosphory-

lation on Ser2152 is kinetic rather than thermodynamic. Phos-

phorylation reduces the force and constraints requirements,
Biophysical Journal 97(12) 3095–3104
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increases the chance to remove autoinhibition, and thus

causes the integrin binding reaction to proceed quicker.

However, with sufficient force and time, the autoinhibition

will eventually be removed. In the experiment by Travis

et al. (42), the cells remain intact for 48 h before they are

lysed, and this may sufficiently activate a detectable popula-

tion of filamin-A molecules.

We also speculated that applied tensile forces would lead to

the refolding of IgFLNa-R20, and assist in the removal of

autoinhibition, but could only find evidence for refolding

of IgFLNa-R20 in phosphorylated models with tension

(Models 4 and 5). In these models, the amino acid loop

that contained phosphoSer2152 in IgFLNa-R20 (Fig. S1)

approaches the b-strand inhibitor and associates with

Arg2146–2149 on the inhibitor. Furthermore, association with

IgFLNa-R20 can stabilize the b-strand inhibition and the

energetic costs of dissociation from IgFLNa-R21 may be

compensated by this phenomenon. This interaction may serve

to further promote integrin binding on IgFLNa-R21 by

keeping the dissociated competitive inhibitor away from its

binding site. The conformational changes discussed in this

study may mechanistically describe activation of filamin-

A’s integrin binding in vivo. However, future studies should

actually assess whether forced dissociation of the inhibitory

b-strand of IgFLNa-R20 is sufficient to lead to filamin-A

binding to integrin in vivo.

The stability of IgFLNa-R21 was also a significant factor

in our analysis and in determining if integrin binding is

possible once the autoinhibition has been removed. We

hypothesize that the stabilizing constraints possibly represent

downstream repeats, IgFLNa-R22–24, that may interact with

IgFLNa-R21. Empirically we found 10 amino acids that

were key for stability of IgFLNa-R21, four proline residues,

and the remaining six being neighbors of these and other

proline residues (Fig. 2 B). These proline residues provided

turns and loops in the Ig-like fold and had a major role in

maintaining the tertiary structure of IgFLNa-R21. However,

this hypothesis cannot be tested with our current methods as

no crystallized model, including IgFLNa-R21 and IgFLNa-

R22 for example, is available currently (2,14,37).

Alternatively, these interactions may be required for

the timescales under which we implemented our analysis.

A decreased force magnitude may be sufficient to remove

autoinhibition if this occurred over the relatively much longer

duration of a microsecond. Eventually, the time dependence

in these trajectories may be assessed in the future as increased

computational power becomes available to allow for much

longer scale simulations (43). We expect that the responses

described herein may have considerably decreased stress

thresholds in vivo and this should be investigated through

simulating smaller forces on the rod region over much greater

timescales.

Comparison between Model 3 and 5 illustrates the

dramatic effect phosphorylation of Ser2152 may have on

stability of the b-strand inhibitor. Between these two models,
Biophysical Journal 97(12) 3095–3104
all variables were held constant with the exception of the

phosphoryl modification of Ser2152 for Model 5 versus

Model 3 where the structure was simulated without phos-

phorylation. Without phosphorylation, a minimum of 40 pN

of tensile force was required to result in only partial removal

of the b-strand inhibitor, but many stabilizing constraints

must be imposed and the tension must induce significant tor-

que. Nevertheless, autoinhibition could be destabilized and

nearly disabled with forces as small as 30 pN extension

forces with phosphorylation of Ser2152, but a 40 pN force

most reliably and quickly removed inhibition completely.

This result strongly suggested that the phosphate group

effectively decreased the requirement to remove the autoin-

hibition, and facilitates integrin binding, which could lead

to a mechanotransduction event.

Phosphorylation on Ser2152 increases the affinity of this

now modified, negatively charged residue to ionically

interact with the positively charged arginine residues on

the b-strand inhibitor, Arg2146–2149 (Fig. S1). We find this

phosphoserine binds to and stabilizes the b-inhibitor once

it dissociates from the binding site. The salt bridges formed

between phosphoSer2152 and the Arg2146–2149 may stabilize

the unbound b-strand facilitating its removal. Therefore,

without phosphorylation of Ser2152, higher tensile forces

were required to remove the b-inhibitor.

Although our results showed that 40 pN was the minimum

force required to remove the b-inhibitor, again we consider

that in vivo over much longer timescales, less force may

be required. To save computation time, we typically pulled

the protein for 500 ps, which is relatively short as most bio-

logical reactions take place in a timescale of microseconds

(44,45). If the model was pulled for longer time, the required

force could decrease, but our multiple short simulations are

statistically relevant (46).

The results from the models are consistent with the

hypothesis that phosphorylation of Ser2152 decreases the

loading constraints required to remove autoinhibition. Func-

tionally, from these data we hypothesize phosphorylation of

Ser2152 increases the sensitivity of the rod region IgFLNa-

R19–21 to tensile forces. If phosphorylation serves to lower

the tension threshold required to remove autoinhibition of fil-

amin-A binding to integrin, then cell sensitivity to stress can

be modulated. Therefore, phosphorylation of filamin-A can

play an interesting dual role in the mechanosensitivity of

the cell. Conversely, previous experiments by Shifrin et al.

(23) and Glogauer et al. (24) have shown that filamin-A is

necessary to modulate cellular desensitization to force.

Filamin-A may mediate cell survival during mechanical

stress via dephosphorylation and therefore decreasing cell

sensitivity to force (23,24). However, the possibility remains

that in vivo filamin-A may solely function in its phosphory-

lated form, and that both tension and phosphorylation are

required for physiological activity.

Furthermore, because mechanical force is involved in the

promotion of integrin binding, filamin-A may have a
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phenomenal function in cellular mechanotransduction

pathway. Although a recently published structure illustrating

that the other two rod regions resembling IgFLN-aR20–21,

IgFLNa-R16–17, and IgFLNa-R18–19, lack phosphorylation

regulatory sites, mechanical force may alter the observed

packed domain arrangements (47). Mechanical stimulation

may facilitate multiple conformational changes in the rod

domain. For instance, many in vivo and in vitro observations

demonstrate the propensity of cells to form focal adhesions

with mechanical stimuli (6,25,48,49). Filamin-A may be

involved in the formation of focal adhesions from the matura-

tion of focal complexes (8). Because the cortical actin network

is under tension due to myosin-II activity, filamin-A can be

activated once localized in the cortical network and therefore

bind to integrin (22).

CONCLUSION

The simulations in this study suggest that mechanical force

may be a major and direct cause of autoinhibition removal.

Phosphorylation on Ser2152 increases the possibility of

removal by decreasing the force and constraints requirement.

However, the proline constraints used in the simulation

models are obtained through trial and error. Although we

provide many hypothetical explanations and justifications,

further investigations are indeed desired, especially the inter-

action between IgFLNa-R21 and IgFLNa-R22–R24 that

helps the stabilization of the model.

Future experiments should also consider identifying if

cells indeed can modulate their mechanosensitivity via

filamin-A phosphorylation. We are currently working to

include a more complete molecular picture of cellular me-

chanotransduction, and hope to include future simulations

of structures with more filamin-A repeats, filamin homologs

and other actin-binding proteins. In addition, in vitro AFM

experiments with filamin-A can serve as a great comparison

with the molecular conformations proposed here. These

experiments may be beneficial in supporting a clearer picture

of cellular mechanotransduction.
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